Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis.

نویسندگان

  • S F Garczynski
  • J W Crim
  • M J Adang
چکیده

Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacillus thuringiensis delta-endotoxin and larval Manduca sexta midgut brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers.

Brush-border membrane vesicles prepared from midguts of Manduca sexta larvae were incorporated into planar phospholipid bilayers. Addition of Bacillus thuringiensis delta-endotoxin to the buffered salt solutions bathing these bilayers resulted in large irreversible increases in conductance. At pH 9.6, the smallest toxin-dependent increase in bilayer conductance observed was 13 nS. Similar condu...

متن کامل

Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion.

Information on the molecular determinants of receptor recognition, membrane insertion and toxin pore-formation was sought by making 42 single and multiple substitutions of residues 312-314 (GYY), 367-370 (YRRP) and 438-441 (SGFS) in the Bacillus thuringiensis insecticidal CrylAc delta-endotoxin by site-directed mutagenesis. These three regions correspond to three putative surface-exposed loops ...

متن کامل

Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated.

We determined that Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxins recognize the same 110, 120 and 170 kDa aminopeptidase N (APN) molecules in brush border membrane vesicles (BBMV) from Heliothis virescens. The 110 kDa protein, not previously identified as an APN, contained a variant APN consensus sequence identical to that found in Helicoverpa punctigera APN 2. PCR amplification of H...

متن کامل

Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA.

Although extensively studied, the mechanism of action of insecticidal Bacillus thuringiensis Cry toxins remains elusive and requires further elucidation. Toxin receptors in the brush border membrane demand particular attention as they presumably initiate the cascade of events leading to insect mortality after toxin activation. The 170-kDa Cry1Ac toxin-binding aminopeptidase from the tobacco bud...

متن کامل

Incorporation of protease K into larval insect membrane vesicles does not result in disruption of integrity or function of the pore-forming Bacillus thuringiensis delta-endotoxin.

Bacillus thuringiensis delta-endotoxins insert into the brush border membranes of insect larval cells to form ion channels. A possible interaction of these toxins with a cytoplasmic component was examined by preloading vesicles from insect larval cells with protease K followed by incubation with toxin. There was no evidence for toxin antigens smaller than the intact toxin in extracts of solubil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 57 10  شماره 

صفحات  -

تاریخ انتشار 1991